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Abstract 

Functionally graded porous (FGP) plates have been introduced as modern structural members which 
open a new window to optimal and functional designs. Despite the need to study the effect of graded 
porosity on the mechanical behavior of FGP plates, it is necessary to consider the very extensive and 
valuable literature in this field, presenting remarkable closed-form solutions. Hence, this paper aims 
to answer where is possible to implement the available exact solutions for the analysis of FGP plates. 
As the special distinction of FGP plates, graded porosity, is reflected in their stiffnesses and moments 
of inertia coefficients, 12 different functionality of porosity distribution along the thickness are 
considered and a set of explicit formulation for evaluating these coefficients are presented to be 
substituted in already provided analytical solutions. Many examples including bending and free 
vibration of thin and thick FGP plates are exhibited and the influence of the type of porosity 
distribution is discussed in details. This work can be considered as a guideline for designers to 
evaluate the effect of graded porosity based on the cornerstone of the huge number of solutions in the 
precious literature of plate theories. 
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1. Introduction

The application of the plate theory is useful to design related structures and its applications have been 
extending in the various industries. Plates with various geometrical shapes e.g. rectangular, circular, 
annular, sectorial, triangular, trapezoidal, skew, polygonal, etc. have been extensively studied in order 
to evaluate the mechanical behavior of them under various loading conditions such as bending [1], 
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buckling [2], and vibrations [3] even in thermal environments [4]. In addition, all the possible 
boundary conditions such as clamped, simply supported, free, and elastic foundations have been 
considered for analyzing the plates. A plate is defined as a three-dimensional mechanical component 
which one of its dimensions is much smaller than the two other ones. This especial planar geometry 
is considered to develop some simplified two-dimensional theories, which have been progressive 
throughout the time, instead of the more complex and general three-dimensional elasticity. These 
plate theories can be classified into two main categories i.e. the Classical Plate Theory (CPT) first 
introduced by Kirchhoff [5] and several shear deformation plate theories. The key difference between 
them is that the former does not take to account the shear stresses along the thickness of the plate 
while the latter considers it in various assumptions introducing many different formulations for shear 
deformation of plates. It is shown that only for enough thin plates the results obtained by CPT are 
reliable while for more than moderately thick plates shear deformation theories need to be adopted. 
The simplest one, first mentioned by Mindlin and Reissner, is known as the first-order shear 
deformation plate theory (FSDT) considering constant shear stress along the thickness by defining a 
shear correction factor. The higher-order shear deformations lead to subsequent plate theories, which 
the review of them was reported by Reddy [6–8]. These plate theories are widely implemented in the 
literature [1,6,9–11]. In the new era of composites, e.g. fiber-reinforced laminated composites, 
functionally graded materials, nanocomposites, porous materials, or smart materials, the plates made 
of these modern materials were manufactured for achieving the concept of efficient and smart 
structures. Accordingly, in the last decades, the theories of plates have been upgraded and the 
associated governing equations been resolved by the researchers in the field for these new 
applications.  

Plates made of fiber-reinforced laminated composites as orthotropic materials, have extensive usage 
especially in lightweight applications [12]. A comprehensive investigation on the mechanics of 
laminated composite plates and shells is presented in the book by Reddy [6]. As another composite, 
functionally graded materials (FGMs) in the classification of isotropic but nonhomogeneous materials 
have been widely taken into consideration in the aerospace, biomedical, and automotive industries. 
FGM plates are generally made of two materials whose properties gradually change from one to the 
other via a function of the position. The most recognized types of FGM plates are made of the mixture 
of metals and ceramics, mainly as thermal shielding where the metal guarantees the sufficient 
toughness whereas the ceramic can resistance the vast of temperature changes [13]. For this 
application the properties of FGM plates need to vary along the thickness direction [14–16], however, 
the variation along the in-plane directions are also reported [17–19]. A huge number of researches 
addressed the mechanical behavior of FGM plates by means of either theoretical or numerical 
solutions [20,21]. Static bending analysis of the FGM circular or rectangular plates under different 
loading and boundary conditions has been investigated in detail [22–25]. Besides, vibration analysis 
of the FGM plates have been examined especially due to its application in aerospace applications 
[26–28]. The fabrication of FGM plates may include some inevitable porosities during the 
manufacturing process which should be considered as voids for evaluating the mechanical behavior. 
For assessing the influence of these defects, both randomly or gradually distribution of voids are 
assumed for studying both FGM plates [29–31] or beams [32–34]. 

On the other hand, impressive growth of digital manufacturing especially additive manufacturing for 
mass production of structural members as well as developments in the fabrication of the porous metal 
foams provide a new opportunity for engineers to utilize the high porous materials in order to achieve 
optimal and functional designs [35]. Thanks to developing the industrial 3D printers with the 
possibility of free design of microstructures, it is possible to ideally fabricate any kind of porosity 
even plates with functionally graded porosity in the desired directions. The application of such 
functionally graded porous (FGP) plates can be extended in the industries especially where the weight 
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to strength ratio is a critical parameter such as in aircraft and marine technologies; However, few 
studies have been accomplished in this field. Next, some of researches of FGP have been summarized. 

Heshmati and Daneshmand [36] exposed the benefits of using the FGP plates compared to the 
traditional ones. They analyzed 3D free vibration of FGP plates resting on two-parameter elastic 
foundations and a semi-analytical approach was presented. The effect of radially graded porosity on 
the free vibration behavior of thick circular and annular sandwich plates was investigated by 
Heshmati and Jalali [37]. Both clamped and simply supported boundary conditions were considered 
and equations of motions were numerically solved by the pseudo-spectral method. Using FSDT, the 
linear free vibration properties of rectangular porous plates located between two layers of 
piezoelectric have been investigated by Askari et al. [37]. The results revealed that the type of porosity 
distribution could significantly affect the vibrational behavior. In addition to FSDT, these authors 
[38] evaluated the same problem by means of third-order shear deformation plate theory. In another
study, CPT has been employed alongside the Von Kármán strain-displacement relationship and stress
function in order to evaluate a graphene platelet reinforced sandwich by Li et al. [39]. They computed
the dynamic buckling and non-linear vibration of the plate and discussed the influence of Winkler-
Pasternak elastic foundation. Damping and thermal environment effects were also taken into account.
Rezaei and Saidi studied vibrational [40] and buckling [41] analysis of the moderately thick fluid-
infiltrated porous annular sectorial plates using FSDT. Simply supported boundary condition was set
for radial edges and the porous network was saturated by the fluid. Their outcomes ascertained that
the existence of the fluid in the FGP could increase the fundamental frequency and the critical
buckling load. In a similar study, Kamranfard et al. [42] examined the FGP plates with annular
sectorial shape under in-plane uniform compressive loading in which buckling and vibration analysis
were taken into consideration by means of FSDT. Likewise, simply supported boundary condition
was used for radial edges. The main results deduced that increasing the in-plane load leads to
decreasing the natural frequency, and the mode shapes of vibration depended on the geometrical
parameters and loading values. Vibration and buckling response of the FGP plates were also studied
by Yang et al. [28]. They developed FSDT to determine the response of FGP nanocomposite plates
reinforced with graphene platelets. Moreover, the displacement field was interpreted by utilizing the
Chebyshev-Ritz method. As well as the other research results, they demonstrated that the increase of
porosity coefficients caused the decrease of the fundamental natural frequency and the buckling loads.
Circular tapered FGP plates were analyzed by Jalali and Heshmati [28]. Unlike the previous studies
in which the porosity distribution was in the thickness direction, they introduced three different types
of porosity distribution along the radial direction. By means of FSDT, vibration behavior of two
different boundary conditions, simply supported or clamped end ones were illustrated alongside the
pseudo-spectral method to solve the equations of motions. In addition to FGP plates, researchers have
also applying FGP for beams, panels, and shells. Chen et al. [43] assumed two different distributions
for porosity in the thickness direction and solved the static bending and elastic buckling problems by
using the Timoshenko beam theory. Not only the static problems but also the dynamic analysis of the
beam was also investigated. Heshmati and Daneshmand [44] analyzed the vibration response of the
two sides clamped FGP beams by using the Timoshenko beam theory. The behavior of vibration of
FGP doubly-curved panels and shells of revolution was determined by Zhao et al. [45]. Like most of
the researches, they considered the porosity distribution in the thickness direction and general
boundary condition was obtained via the modified Fourier series. Finally, they reported the influence
of the boundary conditions and parameters of material on free vibration behavior.

FGP plates are novel structural members with many potential applications in a wide variety of 
industries. Investigation on their responses under different kinds of loading and boundary conditions 
for various geometrical shapes can open a new window for engineers to achieve optimal designs. 
Despite some recent studies, the problem is open for many other conditions. On the other hand, a 
huge number of analytical solutions are provided in the literature for the general problem of isotropic, 
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anisotropic, homogeneous, and nonhomogeneous plates under various types of loadings based on 
well-known plate theories. The key point of the present paper is to answer this question: Is it always 
worthwhile to resolve the governing equations of plate theories for graded porosity along the 
thickness?  It is shown that the answer is no, in general. This paper aims to illuminate the way for 
implementation of analytical solutions in the literature for evaluation the mechanical response of FGP 
plates by introducing a set of explicit equations for calculating the stiffnesses and moments of inertia 
of FGP plates having various functionality of porosity distributions. It prevents resolving the 
governing equations of motions for the FGP plates in the situations solved in the past. In order to 
validate, various examples are presented to predict the behavior of the FGP plates with different types 
of porosity distributions along the thickness direction and the obtained results are compared to those 
from FEM. This paper can be an applicable guideline for designers and engineers to assess the 
response of the FGP plate alongside the extensive solutions in the literature. 

2. Problem description 

2.1. Functionally graded porosity 

At first, the relationship between the amount of porosity and density of a porous material should be 
defined. The porosity can be quantified by introducing the porosity parameter 𝑝 which varies between 
zero and one. The density 𝜌 of a porous material is simply related to this parameter as follows: 

𝜌 = �̅�(1 − 𝑝)  
(1) 

where 𝜌 is the density of the bulk material without any porosity (𝑝 = 0). Because of distributions of 
pores through the material, the Young’s modulus also changes with respect to the value of the bulk 
material, 𝐸. In this work, an FGP plate of open-cell porosity has been selected because of its capability 
for achieving high porosity values as well as its possibility for 3D printing manufacturing. For open-
cell porous materials, the power law of the power of two can describe the relationship between the 
Young’s modulus and the density accurately [43,46–48]: 

= , 𝐸 = 𝐸(1 − 𝑝)   
(2) 

According to Fig.1, consider a plate of the thickness of ℎ where 𝑧 axis aligned with the thickness 
direction and the origin of the coordinate locates on the mid-plane of the plate. This plate is made of 
bulk material of density of �̅�, Young’s modulus of 𝐸 and Poisson’s ratio of �̅�. For FGP plates with 
porosity variation along the thickness, the amount of porosity is a function of 𝑧-coordinate as 𝑝(𝑧). 
If the parameter of 𝑝  represent the maximum porosity in the plate, Eq. (1) can be rewritten as: 

 𝜌(𝑧) = �̅� 1 − 𝑝(𝑧)  
 𝑝(𝑧) = 𝑝 𝐹(𝑧) (3) 

in which the function 0< 𝐹(𝑧)<1 controls how the porosity varies. As the power law, Eq. (2), is valid 
for all the points of the porous plate, thus Young’s modulus varies in the thickness direction depended 
on the 𝑧-coordinate as follows: 

𝐸(𝑧) = 𝐸 1 − 𝑝(𝑧)   (4) 

Three different types of porosity variation along the thickness, named Pyramid (P), Sandglass (S), 
and Diamond (D) have been assumed which are presented in Fig. 1. For the P-type, the maximum 
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porosity locates at the top of the plate (𝑧 = +0.5ℎ) while the minimum locates at its bottom (𝑧 =
−0.5ℎ). For the S-type, the maximum and the minimum porosities locate at the mid-plane of the plate
(𝑧 = 0) and at its surfaces (𝑧 = ±0.5ℎ), respectively, while for the D-type is vice versa. It is
mentioned that unlike the P-type, the material properties are symmetric with respect to the mid-plane
for both the D- and S-types.

Although the porosity variation can be defined as any mathematical function, four common functions 
with a vast range of varieties are considered, named Linear, Parabolic, Cubic, and Cosine. 
Consequently, the function of porosity variation along the thickness, 𝐹(𝑧), has 12 expressions as: 

Polynomial Function (k=1: Linear, k=2: Parabolic, k=3: Cubic): 

P-type: 𝐹(𝑧) = −

S-type: 𝐹(𝑧) =

D-type: 𝐹(𝑧) = 1 −

(5a) 

Cosine Function: 
P-type: 𝐹(𝑧) = cos( + ) 

S-type: 𝐹(𝑧) = 1 − cos  

D-type: 𝐹(𝑧) = cos  

(5b) 

In order to refer to each of these porosity distributions, Table 1 names them. Fig 2 shows the variety 
of the 𝐹(𝑧) function through the thickness direction for all the porosity distributions. 

Table 1: Various types of porosity distributions. 

Linear Parabolic Cubic Cosine 
Pyramid (P-type) P1 P2 P3 PC 
Sandglass (S-type) S1 S2 S3 SC 
Diamond (D-type) D1 D2 D3 DC 
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a) Pyramid 
 

  

b) Sandglass 
 

 
 

c) Diamond 
 

 

 
Fig 1. Types of variation of porosity along the thickness a) Pyramid, b) Sandglass, c) Diamond. 

2.2. Stiffnesses and Moments of Inertia 

In the governing equations of motions based on the well-known theories of plates, the stiffnesses and 
the moments of inertia coefficients express the material/structural properties. Thus, the difference 
between solutions due to changing the material properties of plates is reflected in these coefficients 
which can be obtained as below: 

(𝐴, 𝐵, 𝐷) = 𝑄(𝑧)(1, 𝑧, 𝑧 )𝑑𝑧
/

/

 (6a) 

where 𝑄(𝑧) =
( )

 (6b) 

(𝐼 , 𝐼 , 𝐼 ) = 𝜌(𝑧)(1, 𝑧, 𝑧 )𝑑𝑧
/

/

 (6c) 

where 𝐴, 𝐵 and 𝐷 are the stretching stiffness, the stretching-bending stiffness, and the bending 
stiffness, respectively. Moreover, the moments of inertia are represented by 𝐼 , 𝐼  and 𝐼 . The effect 
of porosity on the Poisson’s ratio has been neglected in this research so that the Poisson’s ratio has a 
constant value of �̅�. It is worth mentioning that for the case of symmetric material respect to the mid-
plane occurs in S- and D-types, the function under integral for evaluating two coefficients of B and 
𝐼  is becoming odd which result in zero. In addition, if the plate thickness is constant and the 
mechanical properties change only along the thickness direction, these stiffnesses and moments of 
inertia coefficients appear as constants in the governing equations of the plate. Otherwise, in the case 
of either variable thickness plates or variation of porosity along the in-plane axes,  the coefficients of 
stiffnesses and moments of inertia depend also on the in-plane position. 
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Based on Eq. (6) the coefficients of stiffnesses and moment of inertia for an FGP plate depend on the 
plate thickness, h, density and Young’s modulus of the bulk material, �̅� and 𝐸, and absolutely the 
maximum value of the porosity 𝑝 . To generalize the results, the dimensionless stiffnesses and 
moments of inertia coefficients are defined as: 

𝐴∗ =
𝐴

�̅�
, 𝐵∗ =

𝐵

�̅�ℎ
, 𝐷∗ =

𝐷

𝐷
, 𝐼∗ =

𝐼

𝐼
, 𝐼∗ =

𝐼

𝐼 ℎ
, 𝐼∗ =

𝐼

𝐼
 (7a) 

�̅� =
𝐸ℎ

(1 − 𝜈 )
, 𝐷 =

𝐸ℎ

12(1 − 𝜈 )
, 𝐼 = �̅�ℎ, 𝐼 =

�̅�ℎ

12
  (7b) 

These dimensionless parameters are only function of the maximum porosity 𝑝  and are independent 
of the geometric and material parameters. Substituting Eq. (7) into Eq. (6) the explicit formulation 
for calculating the dimensionless stiffnesses and the moments of inertia coefficients is obtained. It is 
demonstrated that the relationship between the dimensionless stiffnesses (𝐴∗, 𝐵∗, 𝐷∗) and the 
maximum porosity parameter, 𝑝 , is in the general form of a second-order polynomial equation, Eq. 
(8). The coefficients of 𝑎  and 𝑎  are illustrated in Table 2 for different porosity distributions. In 
addition, the 𝑎  coefficient for evaluating 𝐴∗and 𝐷∗ is equal to one and for 𝐵∗ is equal to zero. 

(𝐴∗, 𝐵∗, 𝐷∗) = 𝑎 𝑝 + 𝑎 𝑝 + 𝑎 , 

 𝑓𝑜𝑟 𝐴∗ 𝑎𝑛𝑑 𝐷∗: 𝑎 = 1, 𝑓𝑜𝑟 𝐵∗: 𝑎 = 0 
(8) 

The relationship between the dimensionless moments of inertia (𝐼∗, 𝐼∗ and 𝐼∗) and the maximum 
porosity parameter, 𝑝 , is given in the general linear form of Eq. (9) whose slope, 𝑏 , is reported in 
Table 2 for different porosity distributions. The 𝑏  coefficient for evaluating 𝐼∗ and 𝐼∗ is equal to one 
and for 𝐼∗ is equal to zero. 

(𝐼∗, 𝐼∗, 𝐼∗) = 𝑏 𝑝 + 𝑏  

𝑓𝑜𝑟 𝐼∗ 𝑎𝑛𝑑 𝐼∗: 𝑏 = 1, 𝑓𝑜𝑟 𝐼∗: 𝑏 = 0 
(9) 
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Fig 2. Variation of function F(z) along the thickness of plate. a) Pyramid, b) Sandglass, c) Diamond. 

Obviously, for all 12 types of porosity distributions, by increasing the porosity, both the 
dimensionless stiffnesses and the moments of inertia decreases because increasing the porosity leads 
to decreasing the stiffness, however, in Eq. (10a-f), the values of dimensionless stiffnesses and 
moments of inertia for all types of porosity distributions along the thickness are compared. This 
comparison may be useful as an initial design idea for selection of the proper porosity distribution. 

𝐴∗ 𝐷3 < 𝐷2 < 𝑃𝐶 = 𝐷𝐶 < 𝑃1 = 𝑆1 = 𝐷1 < 𝑆𝐶 < 𝑃2 = 𝑆2 < 𝑃3 = 𝑆3 
(10a) 

𝐵∗ 𝑃𝐶 < 𝑃1 < 𝑃3 < 𝑃2 
(10b) 

𝐷∗ 𝑆1 < 𝑆𝐶 < 𝑆2 < 𝑃𝐶 < 𝑆3 = 𝐷3 < 𝑃1 < 𝐷2 < 𝐷𝐶 < 𝑃2 < 𝑃3 < 𝐷1 
(10c) 

𝐼∗ 𝐷3 < 𝐷2 < 𝑃𝐶 = 𝐷𝐶 < 𝑃1 = 𝑆1 = 𝐷1 < 𝑆𝐶 < 𝑃2 = 𝑆2 < 𝑃3 = 𝑆3 
(10d) 

𝐼∗ 𝑃3 < 𝑃1 = 𝑃2 < 𝑃𝐶 
(10e) 

𝐼∗ 𝑆1 < 𝑆𝐶 < 𝑆2 < 𝑃𝐶 < 𝑆3 = 𝑃1 = 𝐷3 < 𝑃2 = 𝐷2 < 𝐷𝐶 < 𝑃3 < 𝐷1 
(10f) 

 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

z /
h

F (z )

Linear
Parabolic
Cubic
Cosines

a) Pyramid
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

z/
h

F (z )

Linear
Parabolic
Cubic
Cosines

b) Sandglass

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

z /
h

F (z )

Linear
Parabolic
Cubic
Cosines

c) Diamond



9 

 

Table 2: Coefficients for calculation of the dimensionless stiffnesses and moments of inertia of 
FGP plates. 

 
Linear  Parabolic  Cubic  Cosine 

P1 S1 D1  P2 S2 D2  P3 S3 D3  PC SC DC 

𝑨∗ 
a1 1/3 1/3 1/3  1/5 1/5 8/15  1/7 1/7 9/14  1/2 

−8 + 3 𝜋

2𝜋
 1/2 

a2 -1 -1 -1  -2/3 -2/3 -4/3  -1/2 -1/2 -3/2  −4/𝜋 
2(2 − 𝜋)

𝜋
 −4/𝜋 

                 

𝑩∗ 
a1 -1/12 0 0  -1/15 0 0  -3/56 0 0  −1/𝜋  0 0 

a2 1/6 0 0  1/6 0 0  3/20 0 0  
2(4 − 𝜋)

𝜋
 0 0 

                 

𝑫∗ 
a1 2/5 3/5 1/10  11/35 3/7 8/35  11/42 1/3 1/3  1/2 

3(64 − 2𝜋 − 8𝜋 + 𝜋 )

2𝜋
 

(−6 + 𝜋 )

2𝜋
 

a2 -1 -3/2 -1/2  -4/5 -6/5 -4/5  -7/10 -1 -1  
12(32 − 8 𝜋 − 𝜋 )

𝜋
 

(192 + 24𝜋 − 4𝜋 )

2𝜋
 

12(8 − 𝜋 )

𝜋
 

                 

𝑰𝟎
∗  b1 -1/2 -1/2 -1/2  -1/3 -1/3 -2/3  -1/4 -1/4 -3/4  −2/𝜋 

2 − 𝜋

𝜋
 −2/𝜋 

                 

𝑰𝟏
∗  b1 1/12 0 0  1/12 0 0  3/40 0 0  

4 − 𝜋

𝜋
 0 0 

                 

𝑰𝟐
∗  b1 -1/2 -3/4 -1/4  -2/5 -3/5 -2/5  -7/20 -1/2 -1/2  

6(32 − 8 𝜋 − 𝜋 )

𝜋
 

(−48 + 6𝜋 − 𝜋 )

𝜋
 

6(8 − 𝜋 )

𝜋
 

For an FGP plate with a constant thickness of h, total area of 𝐴 , total mass of the plate, M, is a 
function of the dimensionless moment of inertia 𝐼∗ and can be calculated as follows: 

𝑀 = 𝜌(𝑧)𝑑𝑧
/

/

= 𝐴 . 𝐼 = 𝐴 . �̅�. ℎ. 𝐼∗ (11) 

Hence, the comparison of masses of FGP plates is similar to comparison of  𝐼∗ in Eq. (10d). 
Optimizing the performance of  an FGP plate as a structural component by use of an identical amount 
of mass is one of the engineering design goals. In this case, it is necessary to provide a unique value 
of mass for different porosity distributions which results in selecting different values of maximum 
porosity parameter 𝑝  for different types of porosity distributions. It should be taken into account 
that the upper limit for the maximum porosity parameter is one (𝑝 < 1) and the equality of mass 
should not result in more than one for it. In order to ensure that this condition is met, the plate with 
the largest dimensionless moment of inertia, 𝐼∗, i.e. S3 or P3 is chosen as the reference. Afterwards 
the maximum porosity parameter of 𝑝  can be determined by equating 𝐼∗ for all types of porosity 
distributions with the reference one. Using Table 2, the relationship between the maximum porosity 
parameter of 𝑝  and the one for the reference (𝑝 ) can be found as 𝑝 = 𝛿�̅�  where 𝛿 values are 
listed in Table 3 for all types of porosity distributions. As an example, if the maximum porosity 
parameter for P3 be 𝑝 = 0.8, the maximum porosity parameters for P1and P2 need to be 
respectively set to 𝑝 = 0.4 (𝛿 = 0.5) and  𝑝 = 0.6 (𝛿 = 0.75). Then, for an optimization process, 
one can be sure that all of them have the same mass.  
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Table 3: Values of 𝛿 for equivalency of mass for different types of porosity distributions. 

 Linear  Parabolic  Cubic  Cosine 
P1 S1 D1  P2 S2 D2  P3 S3 D3  PC SC DC 

𝜹 1/2 1/2 1/2 
 

3/4 3/4 3/8 
 

1 1 1/3 
 𝜋

8
 

 𝜋

4(𝜋 − 2)
 

𝜋

8
 

 

3. Results and discussion 

Eqs. (8) and (9), together with the coefficients set out in Table 2, can be used to calculate the 
dimensionless stiffnesses and the dimensionless moments of inertia for various types of porosity 
distributions for a certain value of the maximum porosity parameter, 𝑝 . Afterwards knowing the 
thickness of the plate, h, and properties of the bulk material, i.e. �̅�, 𝐸 and �̅�, the stiffnesses and the 
moments of inertia can be evaluated by implementing Eq. (7). Considering the geometry, the loading 
and boundary conditions and material properties of the FGP plate, one needs to look for an analytical 
analysis among a huge number of solutions based on the well-known theories of plates widely 
presented in the literature. Then, the stiffnesses and the moments of inertia can be substituted in the 
closed-form solution. For the case of lacking the exact closed-form solution, the calculated 
coefficients may be imported to the governing equations of motion to implement a suitable numerical 
or analytical approach. In order to find the appropriate exact solution for FGP plates, it is 
recommended to put under consideration two essential questions: Is the FGP plate thin enough to be 
analyzed using CPT? Are the material properties of the FGP plate is symmetric with respect to the 
midplane (i.e. S- and D-types)?  

The case of thin FGP plates of symmetric properties is an especial situation where the governing 
equation of plate is the simplest one and the only difference between plates is reflected in the bending 
stiffness, 𝐷, and the moment of inertia 𝐼 . Therefore, the closed-form solutions for the homogeneous 
counterpart based on CPT, which are extensively presented in the classical references (For example 
see [1-3]), may be found and the solution for the FGP plate is simply obtained by multiplying a 
‘porosity correction factor’ which is related to the dimensionless coefficients 𝐷∗ and 𝐼∗. Bending and 
free vibration of thin FGP plates of symmetric properties as two examples are presented in Appendix 
A. Influence of type of porosity distribution on the response of FGP plate for different boundary 
conditions, loading, and the geometry of plate is discussed in detail.  In contrast, for both thick FGP 
plates and thin FGP plates of non-symmetric properties (P-type porosity distribution), there is a 
system of equations instead of a single equation. However, one can find many exact closed-form 
solutions for thick plates, mostly based on FSDT. It is noted that the solutions for non-homogenous 
plates such as FGMs and nanocomposite plates as well as orthotropic plates may be applicable. 
Appendix B and Appendix C respectively provide two instances for implementing closed-form 
solutions to investigate the bending of FGP thin plates of non-symmetric properties and FGP thick 
plates, respectively.  

For validating the results presented in Appendixes, the outcomes from analytical solutions have been 
compared to the ones from FEM commercial software, COMSOL Multiphysics©. In order to model 
the FGP plates in the software, shell physic has been used with at least 20 elements in the thickness 
direction while the quadratic type of meshes has been set. The results are reported for 𝑝 = 0.99 to 
consider the maximum influence of porosity on the response of the FGP plates. It should be noted 
that the percent of the difference between the results obtained by analytical solutions and the ones 
from FEM is calculated as: 
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%𝐸𝑟𝑟𝑜𝑟 =
𝑃𝑙𝑎𝑡𝑒 𝑇ℎ𝑒𝑜𝑟𝑦 − 𝐹𝐸𝑀

𝐹𝐸𝑀
× 100 (13) 

Finally, to make clear the proposed approach, the flowchart for the steps needs to be followed is 
depicted in Fig. 3. 

 

* No need to resolve. See Appendix A for some examples. 
** No need to resolve. See Appendix B for an example. 
*** No need to resolve. See Appendix C for an example. 
**** Needs to solve the governing equations of FGP plates. 

Fig 3. Proposed flowchart for analyzing mechanical behavior of FGP plates. 

4. Conclusion 

This paper presents a guideline for implementing the available analytical closed-form solutions in the 
literature of plate theories for analyzing the mechanical responses of FGP plates. 12 different types 
of functionality covering a wide range of porosity distributions along the thickness are considered. 
For every distribution, explicit formulations for calculating stretching, bending-stretching, and 
bending stiffnesses as well as moments of inertia are presented. Then, it is shown that how these 

Select the type of porosity and set 𝑝  

Calculate dimensionless parameters 
(Eqs. 8 and 9 and Table 2) 

Calculate stiffnesses and moments of 
inertia of the plate (Eq. 7) 

 Any analytical 
 solution? 

  Thin (CPT)? 

  Symmetric  
properties? 

Solve for non-porous and multiply to 
the porosity correction factor  

Yes 

Yes 

*Yes (S- and D-types) 

Use stiffnesses and moments of 
inertia of the FGP plate to solve the 

governing equations 

Substitute stiffnesses and moments of 
inertia of the FGP plate to the closed-

form solutions 
End 

****No ***No  

**N
o (P-type) 
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coefficients can be substituted into the exact solutions to study the effect of porosity distribution on 
the mechanical behavior of FGP plates in details through four examples as follows: 

 Bending of square and circular thin FGP plates of symmetric distribution of porosity 
considering combination of clamped and simply supported edges under uniform or hydrostatic 
transverse loading using CPT. 

 Free vibration of triangular, parallelogram, annular, and annular sectorial thin FGP plates of 
symmetric distribution of porosity for either clamped or simply supported edges using CPT. 

 Bending of thin simply supported square FGP plates of non-symmetric distribution of porosity 
using CPT. 

 Bending of thick simply supported square FGP plates of symmetric and non-symmetric 
distribution of porosity based on FSDT. 

It is approved that the mechanical response of the first two examples i.e. the case of thin FGP plates 
with symmetric properties with respect to midplane can be simply obtained by multiplying a ‘porosity 
correction factor’ to the closed-form solution of the homogeneous counterpart. All the presented 
results are compared to FEM simulations using COMSOL Multiphysics© software to validate the 
accuracy of the predicted results. 

 

Data Availability 

The raw/processed data required to reproduce these findings cannot be shared at this time due to 
technical or time limitations. 
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Appendix A. Bending and free vibration of symmetric thin FGP plates  

In this appendix, the bending and free vibration responses of thin FGP plates of symmetric porosity 
distribution (D- and S-types) are presented. Due to symmetry the coefficients of B and 𝐼  are zero. 
Based on CPT the out-of-plane governing equation of motion is decoupled from in-plane motion and 
can be analyzed separately as: 

𝐷𝛻 𝑤 − 𝑞 = 𝐼 �̈� (A.1) 

where 𝑞 and 𝑤 are the distributed transverse loading and the out of plane displacement, respectively.  
∇  is the Laplace operator and ̇  represent derivative with respect to time. 

 
A.1. Bending of Symmetric FGP Plates  

The governing equation for the symmetric FGP plates under static bending is: 

𝛻 𝑤 =
𝑞

𝐷
, (𝑤 ∝

1

𝐷
) (A.2) 

It can be concluded that the deflection of plate is inversely proportional to the bending stiffness. The 
deflection porosity correction factor, 𝛾 , is introduced as the ratio of the deflection of the FGP plate, 
𝑤, to the deflection of its non-porous counterpart, 𝑤. Considering Eqs. (A2) and (7), the 
dimensionless deflection parameter of 𝛾  is simply evaluated by inversing the dimensionless bending 
stiffness 𝐷∗ as follows: 

𝛾 =  
𝑤

𝑤
=

𝐷

𝐷
=

1

𝐷∗
 (A.3) 

In the other word the deflection of thin FGP plate of symmetric porosity distribution, 𝑤, can be 
obtained by multiplying the deflection of its homogeneous counterpart, 𝑤, to the deflection porosity 
correction factor, 𝛾 . 

In order to validate Eq. (A3), in Figs. A1 to A3 the outcomes from FEM have been compared to the 
corresponding values of 1/𝐷∗ for symmetric distributions of porosity along the thickness.  It is noted 
that the values on the top of each bar indicate the error in percentage based on Eq. (13). Fig. A1 
illustrates the deflection porosity correction factor of an FGP circular plate with a diameter of a, 
thickness of h under a uniform transverse loading for either clamped or simply supported boundary 
conditions. Two thickness to side-length ratios, ℎ/𝑎 equals to 0.01 and 0.1 is considered to also 
estimate the amount of error of CPT for thicker plates. It is obvious that the deflection porosity 
correction factor is always greater than one which means that the deflection of the FGP plate is greater 
than its non-porous counterpart. The maximum deflection porosity correction factor relates to S1 
while the minimum one is to D1. The deflection of the porous plate with maximum porosity of 𝑝 =
0.99 and h/a=0.01 is 9.7 times bigger than the non-porous one for S1 case while for the D1 case, it 
is just 1.66. This is because the higher values of porosity far from the mid-plane lead to the less 
bending stiffness, so the deflection of the FGP plate increases. In addition, the effect of porosity on 
the deflection for both clamped and simply supported boundary conditions is the same. Investigating 
the percentage of error on the top of each bar, it can be deduced that for the circular plates with 
h/a=0.01, the predicted values of 1/𝐷∗ from the CPT are in very good agreement with the deflection 
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porosity correction factor from FEM. However, as expected that for the thicker plate of h/a=0.1, the 
error increases which is bigger for the clamped boundary condition than simply supported one. 
Besides, for thick plates, the CPT overestimates the deflection outcomes for S-type while it 
underestimates the deflections for D-types. It can be concluded that using the CPT for the thick plate 
can only give an initial inaccurate prediction while for the precise results, the FSDT should be taken 
into account. 

 

Fig A1. Deflection porosity correction factor for simply supported and clamped circular plates under the transverse 
uniform distributed loading. a) Sandglass, b) Diamond. The values on the top of bars demonstrate the percentage of 

errors via Eq. (13). 

The effect of porosity distribution on the deflection porosity correction factor for FGP square plates 
with the length of a and the thickness of h is shown in Fig. A2. The behavior of the square plate is 
very similar to the circular one and the CPT can accurately predict the deflection of FGP square thin 
plates. In addition to the symmetric boundary condition with four simply supported edges (SS-SS-
SS-SS), the boundary condition with three simply supported edges and one clamped edge (SS-SS-
SS-C) has been taken into account. The results show that the combined boundary condition for thick 
plate results in a larger error than in the symmetric one. 
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Fig A2. Deflection porosity correction factor for SS-SS-SS-SS and SS-SS-SS-C square plates under the transverse 
uniform distributed loading. a) Sandglass, b) Diamond. The values on the top of bars demonstrate the percentage of 

errors via Eq. (13). 

To check the validity of Eq. (A3) for non-uniform loading, hydrostatic loading is applied to the FGP 
square plates. Fig. A3 indicates that the CPT presented in Eq. (A3) is also in good agreement with 
FEM results for thin plates while for thick FGP plates overestimates and underestimates 
dimensionless deflection for S- and D-types of porosity distributions, respectively. 
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Fig. A3. Deflection porosity correction factor for SS-SS-SS-SS square plates under the transverse hydrostatic 
distributed loading. a) Sandglass, b) Diamond. The values on the top of bars demonstrate the percentage of errors via 

Eq. (13). 
 
 

A.2.  Free Vibration of Symmetric FGP Plates Based on CPT 

Eq. (A1) can be rewritten for the free vibration of FGP plates in transverse direction by assuming the 
harmonic motion as: 

𝛻 𝑤 = −𝛺
𝐼

𝐷
, (𝛺 ∝ 𝐷/𝐼 ) (A.4) 

From Eq. (A4) one can see that for symmetric distributions of porosity, the natural frequency, 𝛺, is 
proportional to the square root of the ratio of bending stiffness to the first moment of inertia. To study 
the free vibration of the FGP plate based on the CPT, the frequency porosity correction factor, 𝛾 , 
has been introduced as the ratio of the natural frequency of the FGP plate to natural frequency of its 
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non-porous counterpart, 𝛺. Considering Eq. (A4), the frequency porosity correction factor is related 
to the dimensionless bending stiffness and the dimensionless first moment of inertia as: 

𝛾 =
𝛺

𝛺
= 𝐷𝐼̅ /𝐷𝐼 = 𝐷∗/𝐼∗ (A.5) 

It can be concluded that the natural frequencies of thin FGP plate of symmetric porosity distribution, 
𝛺, are obtained by multiplying the frequencies of its non-porous counterpart, 𝛺, to the frequency 
porosity correction factor, 𝛾 . 

To validate the accuracy of Eq. (A5), at following the frequency porosity correction factor of the FGP 
plate by means of FEM has been presented for different geometrical shapes, considering either simply 
supported or clamped boundary conditions for thin and thick plates of h/a equal to 0.01 and 0.1  and 
have been compared to the corresponding parameter of 𝐷∗/𝐼∗. The values on the top of the bars 
show the percentage errors according to Eq. (13).  

The frequency porosity correction factor of the FGP plates for the equilateral triangular, 
parallelogram, annular, and annular sectorial shapes are respectively demonstrated in Figs. A4 to A7. 
One can see that the variation of the frequency porosity correction factor with respect to porosity 
distribution is almost the same for all the plate shapes and the results obtained for the thin FGP plates 
using Eq. (A5) show excellent accuracy compare to the FEM results. It is seen that the frequency 
porosity correction factor for S-type porosity distribution is always less than one. It means that 
purposefully implementation of the S-type distribution can decrease the natural frequency with 
respect to its non-porous counterpart. The decrease in frequency is related to S1 (55%), while the 
minimum is shown for S2 (41%). It should be noted that these values are for the maximum porosity 
parameter of 𝑝 = 0.99. The amount of this reduction in frequency can be tuned by changing the 
maximum porosity parameter, 𝑝 , in order to avoid resonance. The reason for reducing the frequency 
is that the porosity decreases both the bending stiffness and the first moment of inertia while for S-
type distribution, reduction of stiffness is more than the moment of inertia. On the other side, for D-
type distribution, the frequency porosity correction factor is slightly greater than one which means 
that these types of FGP plates have a greater natural frequency than the non-porous one. This is 
because the porosity leads to more reduction in the first moment of inertia than the bending stiffness. 
For a plate with h/a=0.01 and maximum porosity parameter of 𝑝 = 0.99, the maximum of increase 
in frequency belongs to D3 (14%) and the minimum is for the D1 (9%). It can be seen that for all 
eight types of porosity distributions, the frequency porosity correction factor is the same for both 
clamped and simply supported boundary conditions. Analyzing the errors on the top of the bars shows 
that the CPT results for thin plates of h/a=0.01 have great accuracy compare to the FEM ones. 
Meanwhile, as it was expected, for h/a=0.1, the CPT results are not correlated with FEM ones with 
high accuracy and the clamped boundary condition have less precise outcomes than the simply 
supported ones. Unlike the results for deflection, the CPT results for thick plate underestimates the 
natural frequency results for S-type distribution while overestimates the natural frequency outcomes 
for D-type one. 

 



21 

 

 

Fig A4. Frequency porosity correction factor for simply supported and clamped equilateral triangular plates. a) 
Sandglass, b) Diamond. The values on the top of bars demonstrate the percentage of errors via Eq. (13). Results are 

presented based on fundamental natural frequency. 
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Fig A5. Frequency porosity correction factor for simply supported and clamped parallelogram plates, 𝑎 𝑏⁄ = 1,  𝜃 =
45°. a) Sandglass, b) Diamond. The values on the top of bars demonstrate the percentage of errors via Eq. (13). Results 

are presented based on fundamental natural frequency. 
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Fig A6. Frequency porosity correction factor for simply supported and clamped annular plates, 𝑟 𝑟⁄ = 2,  𝑎 = 𝑟 − 𝑟 . 
a) Sandglass, b) Diamond. The values on the top of bars demonstrate the percentage of errors via Eq. (13). Results are 

presented based on fundamental natural frequency. 
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Fig A7. Frequency porosity correction factor for simply supported and clamped annular sectorial plates, 𝑟 𝑟⁄ = 2,  𝑎 =
𝑟 − 𝑟 ,  𝜃 = 90°. a) Sandglass, b) Diamond. The values on the top of bars demonstrate the percentage of errors via Eq. 

(13). Results are presented based on fundamental natural frequency. 
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where 𝑢 and 𝑣 are the displacement of the mid-plane along the in-plane directions, 𝑥 and 𝑦, and 𝑞 
and 𝑤 are the distributed transverse loading and the out of plane displacement, respectively. The 
implicit derivative in term of in-plane coordinates is denoted by ( ),  and ( ), . Based on the CPT, 
perpendicular planes to the mid-plane are not deformed after loading and remain perpendicular to the 
mid-plane which means that 𝜓  and 𝜓  which are the rotations around the in-plane axes are equal to 
𝜓 = −𝑤 ,  and 𝜓 = −𝑤 , . Therefore, 𝜓  and 𝜓  do not appear as independent variables in Eqs. 
(B1) to (B3) which is a system of three differential equations with three unknown variables. 

For antisymmetric material properties respect to the mid-plane, P-type, the coefficients of B and 𝐼  
are not zero so that there is a coupling between the in-plane displacement (u and v) and out-of-plane 
one (w). Thus, analyzing the response of inhomogeneous plate with antisymmetric material properties 
require to solve the system of Eqs. (B1) to (B3) in order to determine the displacement field 
simultaneously. There are many analytical and numerical solutions for solving this system of 
equations for different loading and boundary conditions. 

In the following, the bending behavior of the FGP square plates of the side length of a having 
antisymmetric porosity distribution, P-type, and simply supported boundary conditions under 
uniform transversal load q has been examined based on the CPT analytical solution in the literature. 
The Navier solution for a rectangular plate of dimensions of a and b have been reported in Ref. [6]. 
The deflection of the plate can be calculated based on the followed series: 

𝑤 = 𝑊  𝑠𝑖𝑛(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦) (B.4) 

In which 𝛼 = 𝑚𝜋𝑥/𝑎 and 𝛽 = 𝑛𝜋/𝑏 and 𝑊  can be found as follow: 

𝑊 =
𝑄

𝑎
, 𝑄 =

16𝑞

𝑚𝑛𝜋
 

𝑎 = 𝑐 + 𝑐
𝑎

𝑎
+ 𝑐

𝑎

𝑎
 

𝑎 = 𝑐 𝑐 − 𝑐 , 𝑎 = 𝑐 𝑐 − 𝑐 𝑐 , 𝑎 = 𝑐 𝑐 − 𝑐 𝑐  

 

(B.5) 

The 𝑐  are related to the plate stiffnesses as follow: 

𝑐 = (𝛼 + 0.5(1 − �̅�)𝛽 )𝐴 

𝑐 = 0.5(1 + �̅�)𝛼𝛽𝐴 

𝑐 = −(𝛼 + 𝛼𝛽 )𝐵 

𝑐 = (𝛽 + 0.5(1 − �̅�)𝛼 )𝐴 

𝑐 = −(𝛽 + 𝛼 𝛽)𝐵 

𝑐 = (𝛼 + 𝛽 ) 𝐷 

(B.6) 

The dimensionless deflection is defined as the ratio of porous to non-porous plate. This value for an 
FGP square plate of the side length of a, thickness of h with h/a equal to 0.01 and 0.1 with 
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antisymmetric porosity distribution is presented in Fig. B1. The maximum deflection porosity 
correction factor is related to PC type while the minimum one is for P3. For the maximum porosity 
parameter of 𝑝 = 0.99 and h/a=0.01, the increase in deflection for PC-type is 14.96 times greater 
than the non-porous one while for P3-type, this increase is 2.57 times. By analyzing the errors on the 
top of the bars, same as the symmetric cases, the CPT can predict the results for h/a=0.01 with high 
accuracy compared to the FEM results. It is also expected that the results of CPT for thick plates 
(h/a=0.1) present larger errors overestimating the deflection for the P-type. It is seen that the 
dimensionless parameter, 1/𝐷∗ is just valid for the symmetric porosity distribution, whereas the 
dimensionless deflection for the P-type is completely far from this parameter. 

 

Fig B1. Dimensionless deflection for simply supported square plates with Pyramid porosity distributions. The values on 
the top of bars demonstrate the percentage of errors via Eq. (13). 

 

Appendix C. Bending of thick FGP plates 

In this appendix by implementing the FSDT, the behavior of the thick FGP plates has been examined 
based on analytical solutions in the literature. In this case, in addition to the three mid-plane 
displacements u, v and w, two independent variables of 𝜓  and 𝜓  are considered for rotations around 
in-plane axes in the displacement field. The governing equations of motions for FSDT plates includes 
a system of five differential equations as [4]: 
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+ 𝐵 𝜓 , + �̅� 𝜓 , + 0.5(1 − �̅�)(𝜓 , + 𝜓 , ) = 0 
(C.1) 

𝐴 �̅�𝑢, + 𝑣, + 0.5(1 − �̅�) 𝑢, + 𝑣,

+ 𝐵 �̅�𝜓 , +  𝜓 , + 0.5(1 − �̅�)(𝜓 , + 𝜓 , ) = 0 
(C.2) 

0.5𝑘 (1 − �̅�)𝐴 𝑤, + 𝜓 , + 𝑤, + 𝜓 , − 𝑞 = 0 (C.3) 

−0.5𝑘 (1 − �̅�)𝐴 𝑤, + 𝜓 + 𝐵 𝑢, + �̅�𝑣, + 0.5(1 − �̅�) 𝑢, + 𝑣,
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(C.4) 
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−0.5𝑘 (1 − �̅�)𝐴 𝑤, + 𝜓 + 𝐵 �̅�𝑢, + 𝑣, + 0.5(1 − �̅�) 𝑢, + 𝑣,

+ 𝐷 �̅�𝜓 , +  𝜓 , + 0.5(1 − �̅�) 𝜓 , +  𝜓 , = 0 
(C.5) 

where 𝑘  is the shear correction factor of FSDT which is considered to be 5/6. As the FSDT considers 
the effects of the shear deformation, its outcomes for the thick plate is also accurate and converge to 
the ones from the three-dimensional elasticity theory. Many references addressed the analytical 
solution of the system of Eqs. (C1) to (C5) for different loading and boundary condition especially 
the ones related to FGM made of metal and ceramic in the recent two decades. 

Here as an example, the bending behavior of an FGP square plate with the side length of a of simply 
supported boundary condition under uniform transversal loading q has been investigated. The general 
Navier solution for the FGP plate having either symmetric or antisymmetric porosity distributions 
based on the FSDT has been available in the Ref. [6]. The displacement field components of the plate 
can be assessed by the following series: 

(𝑢, 𝑣, 𝑤, 𝜓 , 𝜓 ) = (𝑈 , 𝑉 , 𝑊 , 𝑋 , 𝑌 , ) 𝑠𝑖𝑛(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦) (C.6) 

where (𝑈 , 𝑉 , 𝑊 , 𝑋 , 𝑌 , ) can be determined as follow: 
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 (C.7) 

𝑄 = .  

The 𝑘  coefficients are related to the plate stiffnesses and one can obtain them as follow: 

𝑘 = (𝛼 + 0.5(1 − �̅�)𝛽 )𝐴 

𝑘 = 0.5(1 + �̅�)𝛼𝛽𝐴 

𝑘 = (𝛼 + 0.5(1 − �̅�)𝛽 )𝐵 

𝑘 = 0.5(1 + �̅�)𝛼𝛽𝐵 

𝑘 = (𝛽 + 0.5(1 − �̅�)𝛼 )𝐴 

𝑘 = 𝑘  

𝑘 = (𝛽 + 0.5(1 − �̅�)𝛼 )𝐵 

𝑘 = 0.5𝑘 (1 − �̅�)(𝛼 + 𝛽 )𝐴 

𝑘 = 0.5𝑘 (1 − �̅�)𝛼𝐴 

𝑘 = 0.5𝑘 (1 − �̅�)𝛽𝐴 

𝑘 = (𝛼 + 0.5(1 − �̅�)𝛽 )𝐷 + 0.5𝑘 (1 − �̅�)𝐴 

(C.8) 
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𝑘 = 0.5(1 + �̅�)𝛼𝛽𝐷 

𝑘 = (𝛽 + 0.5(1 − �̅�)𝛼 )𝐷 + 0.5𝑘 (1 − �̅�)𝐴 

For S- and D-types with symmetric porosity distribution the bending-stretching stiffness B is equal 
to zero and the value of 𝑊  can be simply evaluated as follows rather than Eq. (C7): 

𝑊 =
𝑄

𝑏
 

𝑏 = 𝑘 + 𝑘
𝑏

𝑏
+ 𝑘

𝑏

𝑏
 

𝑏 = 𝑘 𝑘 − 𝑘 , 𝑏 = 𝑘 𝑘 − 𝑘 𝑘 , 𝑏 = 𝑘 𝑘 − 𝑘 𝑘  

(C.9) 

 

Figs. C1 to C3 show the dimensionless deflection, the deflection ratio of porous/non porous plate, in 
terms of the thickness to side length ratio, h/a. The dimensionless deflection has been presented based 
on the CPT, FSDT, and FEM. It is demonstrated that for all types of porosity distribution, good 
correlation can be seen between the FSDT and FEM results for all values of h/a from the thin FGP 
plates (h/a=0.01) to the completely thick ones (h/a=0.2). It is seen that the CPT can predict the 
deflection for h/a=0.01 with good accuracy while by increasing the thickness of the plate, its results 
diverge from the FSDT and FEM ones. Also, it is seen that the CPT overestimate the dimensionless 
deflection for the S- and P-types while underestimate for the D-type. It should be noticed that the 
CPT results show errors for h/a=0.2 that is significant and cannot be neglected. One can observe that 
the values of the deflection correction factor, 1/𝐷∗ is same as CPT results for symmetric distributions, 
Figs. C1 and C2, and can predict the deflection correctly only for thin FGP plates, however, cannot 
be used even for thin FGP plates with antisymmetric porosity distribution, Fig C3 (See the starting 
point of graphs, h/a=0.01).  
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Fig C1. Dimensionless deflection for SS-SS-SS-SS square plates versus thickness to side-length ratio under the 
transverse uniform distributed loading. a) Sandglass Linear S1, b) Sandglass Parabolic S2, c) Sandglass Cubic S3, d) 

Sandglass Cosine SC. 
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Fig. C2. Dimensionless deflection for SS-SS-SS-SS square plates versus thickness to side-length ratio under the 

transverse uniform distributed loading. a) Diamond Linear D1, b) Diamond Parabolic D2, c) Diamond Cubic D3, d) 
Diamond Cosine DC. 
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Fig C3. Dimensionless deflection for SS-SS-SS-SS square plates versus thickness to side-length ratio under the 
transverse uniform distributed loading. a) Pyramid Linear P1, b) Pyramid Parabolic P2, c) Pyramid Cubic P3, d) 

Pyramid Cosine PC. 
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